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A solution is given for the problem of the motion of 2 conducting

gas beyond the outlet of an accelerator. The form of the jet is found
as well as the distribution of all jet parameters, The problem is solv-
ed assuming that the flow is plane, that there are no Hall currents,
and that the velocity increase in the jet is small compared with the
magnitude of the velocity at the exit of the accelerator channel.

1. We shall consider a jet of conducting gas flowing
out of an accelerator. Since the jet flows into a vacuum
a zone of rarefaction should arise at the jet boundary.
But in view of the fact that the gas velocity is large
(from ~5- 10° to 10" em/sec), the M number will also
be very large (M ~ 25 or more). The angle of inclin-
ation of the first characteristic of the rarefied zone
relative to the jet axis will be at the most of the order
of a few degrees. Thus at a distance equal to several
times the height of the accelerator channel beyond its
outlet, the core of the stream will occupy practically
the entire height of the jet, and the zone of rarefaction
will be only a narrow boundary layer. Thus in what
follows we shall neglect the gasdynamic expansion of
the jet and consider a flow pattern which is the result
of the action of electromagnetic forces exclusively.
This means that we shall neglect the pressure gradient
in the equations in comparison withthe electromagnetic
forces.

We shall make the further assumption that the ac~
celerator channel has a rectangular cross section
which is wide enough for the motion to be treated as
plane. Usually the thickness of the electrodes is small
compar ed with the channel height, Thus, for simplicity,
we shall consider the electrodes to be plates of zero
thickness in what follows, When this simplification is
made there may be a singular point at the end of the
electrode in the mathematical solution for the electric
potential. However, since the value of the electric po-
tential does not enter into either the equations or the
boundary conditions, it is quite permissible to make
this idealization.

We shall let the x axis lie in the direction of the jet
axis, and the y axis in the direction of the channel
height. Let the coordinate origin be situated at the
accelerator outlet on the lower electrode. On the as-
sumptions made, ‘the motion of the conducting gas jet
will be described by the following system of equations:
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Here p is the gas density, U and v arethex and y
components of the velocity, H is the magnetic field
strength, o is the conductivity of the gas which will
be assumed constant, and c is the velocity of light.

We shall now formulate the boundary conditions
for this system. Strictly speaking the gas motion in-
side the channel of the accelerator cannot be treated
independently of the motion outside the channel, since
the presence of a conducting jet outside the channel
causes a distortion of the lines of electric current at
the end of the channel. However, in the case when
there are no Hall currents and the channel is fairly
long, the x component of the current in the channel
may be neglected compared with the y component, and
in the first approximation we may take the electric
current lines at the end of the channel to be straight
and parallel to the y axis, When this assumption is
made, the motion in the channel may be calculated
first of all, and then the following boundary conditions
for the density and velocity may be assumed in sol-
ving the system (1.1):

U=U(y), v=vy), p=p () for z=0.

Since no currents flow outside the jet, the condi-
tion H = 0 should hold at the jet boundaries. It is clear
from Egs. (1.1) that U = const and v = const for H = 0.
Thus the jet boundaries will be straight lines, i.e.,
H=0fory=-kxandy=y, + kx, where y, is the
channel height, and k is a constant to be determined
in the course of solving the problem.

At some distance from the accelerator exit the con-
ductivity decreases sharply due to cooling of the gas
as a consequence of radiation, Thus itmaybeassumed
that beyond a certain cross section of thejet, currents
no longer flow. The second boundary condition for H
is then H = 0 for x = xj. Finally the assumption that
the lines of electric current inside the channel close
to its end are parallel to the y axis leads to the con-
clusion that H = H; = const for x = 0. The value of
this constant may be determined after solving the pro-
blem, starting, for example, from the known potential
difference on the electrodes or from the magnitude of
the total current (depending on the particular specific
conditions of the problem).

In considering the motion in the jet we shall as-
sume that Hy is a given quantity in what follows. In
addition we shall, for simplicity, assume that the
density is constant over the exit cross section of the
accelerator, and that the velocity is a constant quan-
tity and in the direction of the x axis. Thus the bound-
ary conditions assume the form

U=mu, v=0,p =py H=H, for =10,



H =0 for y = — kz,
y =1y, + kz and for =z = z,. 1.2)

Here gy, py, Hy are given constants, and k is to
be determined from the condition that the velocity be
in the same direction as the boundary at the jet bound-
ary.

The system of equations (1.1) maybe simplified if we
take account of the following properties of the flow in
the case under consideration. If the accelerator chan-
nel is sufficiently long (very short chaunels, the so-
called end type accelerators, will not be treated here),
then the fraction of the current flowing outside the
accelerator is small compared with the currents flow-
ing inside the accelerator. Thus the change in jet
velocity outside the accelerator is small compared
with the magnitude of the velocity at the accelerator
exif, The angle of broadening of the jet is also small,
and so if we are considering motion at distances from
the exit which are of the order of several times the
channel height, then the change in gas density will also
be small in this zone. We note, moreover, that since
the dimensions of the zone in which the main current
in the jet flows in the directions of the x and y axes
are of the same order, the derivatives with respect
to x and y should also be of the same order.

We set U = uy + u, where u «< u,. Then taking into
consideration the assumptions made above concerning
the flow pattern in the present case, we may linearize
the equations of motion and induction:
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it follows from (1.3) that the values of the velocity
components may be found in this approximation with-
out making use of the continuity equations. After the
velocity components have been found from the con-
tinuity equations, the density distribution in the jet
may be found numerically.

The field strength H may be determined from Eq.
(1.4) independently of u and v. With H as a function
of x and y, the values of u and v themselves may eas~
ily be found by integrating (1.3) allowing for the bound-
ary conditions (1.2):
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Thus the solution of the problem is reduced to find-
ing H from Eq. (1.4) and the boundary conditions (1.2).

With the same degree of accuracy we may, in sol-
ving Eq. (1.4), require that the boundary condition
H = 0 be fulfilled not on the lines y = ~kx and
Y=y, tkx, buton y = 0 and y = y,, straight lines
parallel to the jet axis.

We now look for a solution of Eq. (1.4) in the form
H = f1(x) fo(y). In order to determine £; and f; we
have the equations
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d2f, | dz? — (dnouy [ %) df, [ dz — C?*fy = 0,
@fy | dy + C*f,=0.

Integrating these equations we find the particular
solution which goes to zero for y = 0, y = y;, and

X = Xg,
H, = C,exp (Anz/yo) x
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4= 2Guoyo / c?.
Summing these particular solutions (1.6) and de-

termining Cp from the condition that H = H,, for x =
=0, we find the required solution of the equation
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After the values of H(x,y), u(x,y), and v(x,y)have
been calculated from formulas (1.5) and (1,7) the den-
sity p may be determined from the continuity equation.

The continuity equation is linearized, and the re-
lation obtained is integrated taking the boundary con-
ditions into account together with formulas (1.5) to
give
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Formulas (1.5), (1.7), and (1.8) give a complete
solution of the problem of the flow of a conducting
gas beyond the outlet of an accelerator.

2, In passing to a more detailed analysis we note
the important fact that for the values of x; treated
(xo/yy > 3—4) the distribution of H, and consequently
of all the other quantities, is practically independent
of x;. Actually the factors in (1.7), dependent on x,,
have the form

shi1 @) coop i o B2 oop Bimo g B
Yo Yo Yo Yo Yo

Here k; > 3 for n = 0 and increases with n. However,
for k; > 3 and x/y, > 3 we have thkx,/y, = 1 with an

accuracy to 1078, Taking this into account expression
(1.7) may be simplified by calculating H for x,:
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Further simplification of this formula results if
we take into account the fact that for characteristic
values of the parameters, i.e., for o ~ 10! sec?!,
ug ~5-10° cm/sec, yg ~ 3 cm, it follows that A ~ 0.3,
and consequently A% may be neglected in csmparison
with (2n + 1)? for any n. In this case the series in
(2.1) may be summed (see, for example, [1]) and the
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following expression for H is obtained:
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Figure 1 shows the lines H = const (lines of electric
current), calculated from formula (2.2). The solid
curves correspond to A = 0, and the dashed ones
to A = 0.1. We see from Fig. 1 that at a distance of
two units from the accelerator outlet the magnetic
field falls off practically to zero (H/H, ~ 0.01), while
for A = 0 the magnetjc field decreases somewhat more
slowly. Setting (2.2) into (1.5), we have
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Figures 2 and 3 show profiles of the velocity v
calculated from (2.3) for A = 0,1, Figure 2 presents
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the function v(x/y,) for a series of values of y/y; =

= y*, while Fig, 3 presents the function v(y/y,) for
various values mx/%, = x* Values of v*= —(100pgu,/
/Hi)v are plotted on the ordinate axis in Figs. 2 and 3.
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It is clear from Fig. 3 that the absolute magnitude
of the y velocity component increases monotonically
from the center of the jet to the boundaries. The max-
imum absolute value of v may be obtained from (2.3)
by the limiting transition for y — 0. It is independent
of the value of the parameter A. Actually for y/y, < 1
we make the substitution 1y/y, = 6° and split the inter-
val of integration in (2.3} into two paris: from zero to
%4 and from x; to x, choosing x; such that the condi-

tion 7x;/y, ~ 6 is fulfilled. We may then write
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For 6 — 0 the first integral tends to a quantity inde-
pendent of A, and the second to zero. Thus for any A,
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Fig. 3

within the approximation used in solving the problem,
the jet cone angle « is the same, Its absolute magni~-
tude is

o= arctg |v/u,| = arctg (0.037 He® /[ pouy?) . (2.4)

Figure 4 shows the distribution of the increase in
the x component of velocity calculated from formulas
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(1.5) and (2.2) for A = 0.1 at different cross sections
of the jet. The unit on the abscissa axis is the quantity
u* = (87pyu,Hiu, while that of the ordinate axis is

the ratio y/,. The profile of u is markedly nonuniform
at a distance of from two to three times the channel
height from the exit.

3, I is of interest to consider the flow beyond the outlet of a chan-~
nel with three electrodes: two external electrodes at the same potential
and an intemnal electrode at a different potential, The flow in the jet
emerging from such a channel should be similar to the flow beyond the
outlet of a coaxial accelerator. In this case we shall let the coordinate
origin be situated at the end of the center electrode. Let the coordin-~
ates of the ends of the outer electrodes be +ye, respectively.

The distribution of all quantities may be found everywhere, with
the exception of the zone behind the middle electrode, from the same
formulas as before (formulas (1.5), (2.2), (2.3), (2.4)). Since the veloc-
ity v has different signs on either side of the middle electrode, this
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should lead to the formation of shock waves leaving the end of the mid-
dle electrode,
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We shall carry out some calculations for these compression shocks
and the flow behind them in the first approximation, assuming that the
shocks are strong enough for the pressure in front of them to be neglected
in comparison with the pressure behind them, Since the M pumber for
the stream in front of the shock is very large, the angle of inclination
8 of the shock relative to the x axis is small, and consequently the
height of the zone behind the shock is small compared with the width
of the channel, Taking this into account, as well as the fact that the
shock wave arises as it were from nonuniform flow around a wedge (it
follows from symmetry that the x axis is a streamline of zero curva-
ture), we may neglect, within the degree of accuracy to which we are
working here, the pressure variation across the zone behind the shock
wave. Quantities in front of the shock wave will be denoted by letters
without an index, while letters with the supesscript * will be used for
quantities behind the shock wave, On the assumptions already made we
may write 2]
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where up, ur are the velocity components normal and tangential to the
shock wave. They may be expressed in terms of U, v and 8, the angle
of inclination of the shock to the x axis, as follows:

G, =Ucosf-+vsinp=u-+ u,

Up=—Usin P+ veosPpx= —uf -+ v. (3.2)

Here the second halves of the equations allow for the fact that 8 <
« 1, v/up <1, andu/uy < 1. The coordinate of the compression shock
ys may be calculated from considerations of jet flow behind a shock.
Let the gas in a jet flow which has intersected a shock wave at a cross
section of coordinate x. have a density po(x, X¢) at the cross section
with coordinate x which is under consideration. Then to the first ap-
proximation the rate of gas flow in this jet stream at the cross section
in gnestion is dgq = uopD(x, X4)dy. On the other hand if we consider this
jet at the cross section x, we find that

dg = —p () u, (z4) dy,
uep® (2, zy) dy = — p () u,, (7y) d,y . (3.3)

The first of these equations allows for the fact thatcosg =~ 1.

Assuming that the flow behind the shock is adiabatic and taking (3.1)
into account we find that
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Allowing for (8.4) we have from (3.8)
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Differentiating (3.5) with respect to x and remembering that 8=
=yg B =y§, we obtain the differential equation for determining y:
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The boundary conditions in this case are

ys=0, ys’=Bo:—O.5(u——1)vo/uo for z=0. (3.7)

The second boundary condition expresses the fact that for x = 0 the
velocity v* behind the shock is zero. We thus obtain (3.7) from (3.1) and
(8.2). Integrating (3.6) with the boundary conditions (3.7) we find the
form of the compression shock. The solid line in Fig. 5 shows the
form of the compression shock (in the upper half of the channel), calcu-
lated for w=5/3 and Ho¥/poue® = 2.5 (this corresponds to the case when
the velocity outside the accelerator increases by about 10% of its value
at the accelerator cutoff), The dashed line in the same figure shows the
stream line in the channel calculated from the equation dy/dx = v /u,,
where v is given by formula (2.3). The stream lines were calculated for
the parameter value A = 0.1,

The plasma flow pattern beyond the accelerator cutoff obtained
above is well-confirmed by experimental data, at least qualitatively.

Since the gas behind the compression shock has a higher temperature
than in the main core of the stream, the region behind compression
shocks radiates much more brightly. Usually in experiments the bound-
aries of a brightly glowing zone are clearly evident behind the central
electrode. These boundaries are compression shocks,
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