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FLOW OF A CONDUCTING GAS JET BEYOND THE NOZZLE OUTLET OF AN 

ELECTROMAGNETIC ACCELERATOR 

G. M. Bam-Ze l ikov i ch  

Zhurna l  P r ik ladno i  Mekhaniki i Tekhnicheskoi  F iz ik i ,  Vol. 8, No. 1, pp. 8 - 13 ,  1967 

A solution is given for the problem of the motion of a conducting 
gas beyond the outlet of an accelerator. The form of the jet is found 
as well as the distribution of all jet parameters. The problem is solv- 
ed assuming that the flow is plane, that there are no Hall currents, 
and that the velocity increase in the jet is small compared with the 
magnitude of the velocity at the exit of the accelerator channel 

1. We shal l  cons ider  a jet of conducting gas flowing 
out of an acce l e ra to r .  Since the jet flows into a v a c u u m  
a zone of r a r e f a c t i o n  should a r i s e  at the jet  boundary .  
But in view of the fact that the gas veloci ty  is l a rge  
(from ~ 5 .  l0  s to 107 cm/sec) ,  the M number  wil l  a lso 
be ve ry  l a rge  (M ~ 25 or  more) .  The angle  of i nc l i n -  
ation of the f i r s t  c h a r a c t e r i s t i c  of the r a r e f i ed  zone 
r e l a t i v e  to the jet  axis wil l  be  at the mos t  of the o rde r  
of a few degrees .  Thus at a d i s t ance  equal to s eve ra l  
t imes  the height of the a c c e l e r a t o r  channel  beyond its 
out le t ,  the core  of the s t r e a m  wil l  occupy p r ac t i c a l i y  
the en t i r e  height of the jet ,  and the zone of r a re fac t ion  
wil l  be  only a na r row boundary  layer .  Thus in what 
follows we shal l  neglec t  the gasdynamic  expansion of 
the jet  and cons ider  a flow pa t t e rn  which is the r e su l t  
of the act ion of e l ec t romagne t i c  forces  exclusively .  
This means  that we shal l  neglect  the p r e s s u r e  grad ien t  
in the equations in compar i son  with the e lec t romagne t i c  
forces .  

We shal l  make  the fu r the r  a ssumpt ion  that the a c -  
c e l e r a to r  channel  has a r e c t angu l a r  c ross  sect ion 
which is wide enough for  the  mot ion to be t rea ted  as 
plane.  Usual ly  the th ickness  of the e lec t rodes  is sma l l  
compared  with the channel  height. Thus ,  for  s impl ic i ty ,  
we shal l  cons ider  the e lec t rodes  to be  plates  of zero 
th ickness  in what follows. When this  s impl i f i ca t ion  is 
made  the re  may  be  a s ingu la r  point at the end of the 
e lec t rode  in the m a t h e m a t i c a l  solut ion for the e l ec t r i c  
potent ia l .  However,  s ince  the va lue  of the e l ec t r i c  po -  
ten t ia l  does not enter  into e i ther  the equations or  the 
boundary  condi t ions ,  it is quite p e r m i s s i b l e  to make  
this  ideal izat ion.  

We shal l  let the x axis l ie  in the d i rec t ion  of the jet  
axis ,  and the y axis in the d i rec t ion  of the channel  
height. Let the  coordina te  or ig in  be s i tua ted  at the 
a c c e l e r a t o r  outlet  on the lower  e lec t rode .  On the a s -  
sumpt ions  made,  "the mot ion  of the conducting gas jet  
wil l  be  desc r ibed  by the following sys t em of equat ions:  

O~H" 02H 4z~s I OUH OvH 

0pU Opv 
0x "+-~-y = 0 ,  

ou ou + ! H oH 
P U - ~ x - k P V - ~ y  4~ -o~-x = 0 '  

Ov ov t H OH (1.1) 

Here  p is the gas dens i ty ,  U and v a r e  the x and y 
components  of the veloci ty ,  H is the magne t i c  field 
s t reng th ,  a is the conduct ivi ty  of the gas which wil l  
be  a s sumed  constant ,  and c is the veloci ty  of light. 

We sha l l  now fo rmula t e  the boundary  condit ions 
for  this  sys t em.  St r ic t ly  speaking the gas mot ion i n -  
s ide  the channel  of the a c c e l e r a t o r  cannot be  t r ea t ed  
independent ly  of the mot ion  outs ide  the channel ,  s ince  
the p r e s e n c e  of a conduct ing jet  outs ide the channel  
causes  a d i s to r t ion  of the l ines of e l ec t r i c  c u r r e n t  at 
the end of the channel .  However,  in the case  when 
t he r e  a r e  no Hall  c u r r e n t s  and the channel  is f a i r ly  
long, the x component  of the c u r r e n t  in the channel  
may  be neglec ted  compared  with the y component ,  and 
in the f i r s t  approximat ion  we may take the e l ec t r i c  
c u r r e n t  l ines  at the end of the channel  to be  s t ra igh t  
and p a r a l l e l  to the y axis.  When this  a s sumpt ion  is  
made,  the mot ion  in the channel  may  be  ca lcula ted  
f i r s t  of al l ,  and then the following boundary  condi t ions  
for  the dens i ty  and ve loc i ty  may  be a s s u m e d  in s o l -  
v ing the sys t em (1.1): 

U----U(y) ,  v =  v (y ) ,  p = p  (g) for  x = 0  

Since no c u r r e n t s  flow outs ide the jet ,  the cond i -  
t ion H = 0 should hold at the jet  boundar i e s .  It is c l ea r  
f rom Eqs. (1.1) that U = const  and v -- const  for  H = 0. 
Thus the jet  boundar i e s  wi l l  be  s t ra igh t  l ines ,  i. e . ,  
H = 0 f o r y = - k x a n d y = y 0  + kx, where  Y0 is the 
channel  height,  and k is a constant  to be  de t e rmined  
in the cou r se  of solving the p rob lem.  

At some d i s t ance  f rom the a c c e l e r a t o r  exit the con-  
duct ivi ty  d e c r e a s e s  sha rp ly  due to cooling of the gas 
as a consequence  of rad ia t ion .  Thus it m a y b e  a s s u m e d  
that beyond a ce r t a in  c ros s  sec t ion  of the jet ,  c u r r e n t s  
no longer  flow. The second boundary  condition for H 
is then H = 0 for  x = x 0. F ina l ly  the a s sumpt ion  that 
the l ines  of e l ec t r i c  c u r r e n t  ins ide  the channel  c lose  
to its end a r e  p a r a l l e l  to the y axis  leads to the con-  
c lus ion that H = H 0 = const  for  x = 0. The value  of 
this  constant  may be  de t e rmined  af ter  solving the p r o -  
b lem,  s t a r t ing ,  for example,  f rom the known potent ia l  
d i f fe rence  on the e lec t rodes  or  f rom the magni tude  of 
the total  c u r r e n t  (depending on the p a r t i c u l a r  specif ic  
condit ions of the problem) .  

In c ons i de r i ng  the mot ion in the jet we shal l  a s -  
sume  that H 0 is a given quant i ty  in what follows. In 
addit ion we shal l ,  for s imp l i c i ty ,  a s s u m e  that the 
dens i ty  is constant  over  the exit c ros s  sec t ion  of the 
a c c e l e r a t o r ,  and that the veloci ty  is a constant  quan-  
t i ty  and in the d i r ec t ion  of the x axis .  Thus the bound-  
a r y  condi t ions  a s s u m e  the fo rm 

U = u o ,  v = O , p  = p 0 ,  H = H  0 for  x = O ,  
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H =  0 for y = - - k x ,  

Y = y o + k x  and for  x =  x o. (1.2) 

dZ./1 / dx 2 - -  (4~auo / c 2) d]l / dx ~ C~/~ ~ O, 

d21~ / dy ~ + C2.i~=O. 

Here  #0, P0, H0 are  given cons tan ts ,  and k is  to 
be de t e rmined  f rom the condit ion that the veloci ty  be 
in the s a m e  d i rec t ion  as the boundary  at the jet  bound-  
ary .  

The s y s t e m  of equat ions  (1.1) may  be s impl i f ied  if we 
take account  of the following p rope r t i e s  of the flow in 
the case  under  cons idera t ion .  If the a cce l e r a to r  chan-  
nel  is suff ic ient ly  long (very shor t  channels ,  the so-  
cal led end type a c c e l e r a t o r s ,  wil l  not be t r ea ted  here) ,  
then the f rac t ion  of the cu r r en t  flowing outs ide  the 
a c c e l e r a t o r  is sma l l  compared  with the c u r r e n t s  f low- 
ing ins ide  the acce le ra to r .  Thus the change in jet  
veloci ty  outs ide  the a c c e l e r a t o r  is sma l l  compared  
with the magni tude  of the veloci ty at the a cce l e r a t o r  
exit. The angle  of b roaden ing  of the jet  is a lso sma l l ,  
and so if we a r e  cons ide r ing  motion at d i s tances  f rom 
the exit which a r e  of the o rde r  of s eve ra l  t imes  the 
channel  height, then the change in gas dens i ty  wil l  a lso 
be s m a l l  in this  zone. We note,  m o r e o v e r ,  that s ince  
the d imens ions  of the zone in which the ma in  cu r r e n t  
in the jet flows in the d i rec t ions  of the x and y axes 
a r e  of the s a m e  o rde r ,  the der iva t ives  with r e spe c t  
to x and y should a lso  be of the s a m e  order .  

We set  U = u 0 + u, where  u << u 0. Then taking into 
cons ide ra t ion  the a s sumpt ions  made  above concern ing  
the flow pa t t e rn  in the p re sen t  case ,  we m a y  l i ne a r i z e  
the equat ions of mot ion  and induction:  

au H OH O, poUo coy H OH = 0 ,  (1.3) P~176 + 4n a~ ~ - ~  4n ay 

In tegra t ing  these  equations we find the pa r t i cu l a r  
solut ion which goes to zero for y = 0, y = Y0, and 
x=xo, 

Hn = C~ exp (A:ax/yo) x 

x sh {V A~ q- n ~ [g (xo - -  x) / yo]} sin nrcy / yo, 

A = 2ouoyo / c ~ . 

Summing these  p a r t i c u l a r  solut ions (1.6) and de -  
t e r m i n i n g  Cn f rom the condit ion that  H -- H 0 for  x = 
= 0, we find the r equ i r ed  solut ion of the equation 

o o  

H = 4Hon (exp ~ / n ~ - - o  2 ~ A n x  / ~, 1 X 

X sh[VA2-F(2n+i)2:~(x~ sin ( 2 n + i ) n y  (1.7) 
sh [ ]/'A 2 q- (2n -Jr t) ~ ~xNo / Y0] Yo 

After  the values  of H(x,y),  u(x,y),  and v (x ,y )have  
been  ca lcula ted  f rom fo rmulas  (1.5) and (1.7) the den-  
s i ty  p may  be de t e rmined  f rom the continuity equation. 

The cont inui ty equation is l inea r ized ,  and the r e -  
lat ion obtained is in tegra ted  taking the boundary  con-  
di t ions into account together  with fo rmulas  {1.5) to 
give 

ap po [ O~, o~ ) 

p = po + 8--~o~ L,, - - ~ o  + dx.  - - ~ d x J .  (X.S) 
0 o 

a~H O~H 4nzuo OH (1.4) 
ax2 ~ ~ = c2 aN " 

It follows f rom (1.3) that the values  of the veloci ty  
components  may  be  found in this approximat ion  wi th -  
out making  use  of the cont inui ty  equations.  After  the 
veloci ty  components  have been  found f rom the con-  
t inui ty  equat ions,  the dens i ty  d i s t r ibu t ion  in the jet  
may  be found n u m e r i c a l l y .  

The field s t reng th  H may  be  d e t e r m i n e d  f rom Eq. 
(1.4) independent ly  of u and v. With H as  a funct ion 
of x and y, the values  of u and v t hemse lves  ma y  e a s -  
i ly be found by in tegra t ing  (1.3) al lowing for  the bound-  
a ry  condit ions (1.2): 

' i OH2dx 
v 8npouo .j. Oy �9 (1.5) 

O 

Thus the  solut ion of the p rob l em is reduced to f ind-  
ing H f rom Eq. (1.4) and the boundary  condit ions (1.2). 

With the s ame  degree  of a ccu racy  we may,  in s o l -  
ving Eq. (1.4), r e q u i r e  that  the boundary  condi t ion 
H = 0 be fulf i l led not  on the l ines  y = - k x  and 

Y = Yo + kx, but  on y = 0 and y = Y0, s t ra igh t  l ines  
pa r a l l e l  to the jet  axis.  

We now look for a solut ion of Eq. (1.4) in the fo rm 

H = f l ( x )  f2(y).  In o rde r  to de t e rmine  f l  and f2 we 
have the equations 

F o r m u l a s  (1.5), (1.7), and (1.8) give a complete  
solut ion of the p r ob l e m of the flow of a conduct ing 
gas beyond the outlet  of an a c c e l e r a t o r .  

2. In pass ing  to a m o r e  deta i led ana lys i s  we note 
the impor t an t  fact  that for  the values  of x o t r ea ted  
(x0/y 0 > 3 -4 )  the d i s t r ibu t ion  of H, and consequent ly  
of al l  the other  quant i t ies ,  is p rac t i ca l ly  independent  
of x 0. Actua l ly  the f ac to r s  in (1.7), dependent  on x0, 
have the fo rm 

sh kl (xo -- x) csch klx~ = sh kin cth k~x0 _ _  ch klx 
yo yo yo p0 y0 

Here  k 1 > 3 for  n = 0 and i n c r e a s e s  with n. However,  
for  k 1 > 3 and x/y 0 > 3 we have thklx0/y 0 = 1 with an 
accu racy  to 10 -8. Tak ing  this into account  express ion  
(1.7) may  be  s impl i f ied  by  ca lcula t ing  H for  x0: 

c o  

-Wo/__-o ~ • 

x exp - 1 /A2+(2n+l )2~  sin (2n+l)ny (2.1) 
Y0 yo 

F u r t h e r  s impl i f i ca t ion  of this  fo rmula  r e s u l t s  if 
we take  into account  the fact that  for  c h a r a c t e r i s t i c  

values  of the p a r a m e t e r s ,  L e . ,  for  a ~ 1013 sec  -1, 
u0 N 5 - 106 e m / s e e ,  Y0 ~ 3 cm, it follows that A ~ 0.3, 
and consequent ly  A 2 may be neglected  in e s m p a r i s o n  
with (2n + 1) 2 for any n. In this case  the s e r i e s  in 

(2.1) ma y  be summed  (see, for  example ,  [1]) and the 
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following expression for H is obtained: 

H ~  2H~ ( exp --~o J t g (  sin ny-yo csch-~tx~-~-o). (2 .2)  

F i g u r e  1 shows  the  l i n e s  H = c o n s t  ( l ines  of e l e c t r i c  
c u r r e n t ) ,  c a l c u l a t e d  f r o m  f o r m u l a  (2.2). The  s o l i d  
c u r v e s  c o r r e s p o n d  to A ~= 0, and the  d a s h e d  o n e s  
to A = 0 . I .  We s e e  f r o m  F ig .  1 tha t  at  a d i s t a n c e  of  

two un i t s  f r o m  the  a c c e l e r a t o r  o u t l e t  t he  m a g n e t i c  
f i e ld  f a l l s  off  p r a c t i c a l l y  to z e r o  (H/I-I 0 ~ 0.01), wh i l e  

f o r  A r 0 t he  m a g n e t i c  f i e l d  d e c r e a s e s  s o m e w h a t  m o r e  

s lowly .  Se t t i ng  (2.2) into (1.5), w e  h a v e  

v H~176176  2Anxl 
- -  ~2poUoyo --~--o t X 

o 

X[a . . . .  sin(~y/yo)q _ sh(nx/yo) dx .__ 
L *" "~ sh (~z / y0) J sin~ (sy / v0) + sh, ( ~  / y0) " 

(2 .3)  

F i g u r e s  2 and 3 show p r o f i l e s  of  t h e  v e l o c i t y  v 
c a l c u l a t e d  f r o m  (2.3) f o r  A = 0.1. F i g u r e  2 p r e s e n t s  

'"II I 
W" 

i'li g 
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I 

I i i 
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Fig. i 

the  f u n c t i o n  v ( x / y  o) f o r  a s e r i e s  of v a l u e s  of ~Y/Y0 = 
--- y*, wh i l e  F i g ,  3 p r e s e n t s  the  func t i on  v(y /y  0) f o r  

v a r i o u s  v a l u e s  vx&0 = x*. V a l u e s  of v* = --(100P0U0/ 
/H~)v a r e  p l o t t e d  on the  o r d i n a t e  a x i s  in F i g s .  2 and 3. 

- .g175 

~ v : ~  "- ' - ' -  

/ 
z / 

g g.5 1 

Fig .  2 

It i s  c l e a r  f r o m  F ig .  3 tha t  t he  a b s o l u t e  m a g n i t u d e  

o f  t h e  y v e l o c i t y  c o m p o n e n t  i n c r e a s e s  m o n o t o n i c a l l y  
f r o m  t h e  c e n t e r  of t h e  j e t  to t h e  b o u n d a r i e s .  T h e  m a x -  

i m u m  a b s o l u t e  v a l u e  of v m a y  b e  ob t a ined  f r o m  (2.3) 

by  t h e  l i m i t i n g  t r a n s i t i o n  f o r  y ~ 0. It  is  i n d e p e n d e n t  

of  t h e  v a l u e  of t h e  p a r a m e t e r  A.  A c t u a l l y  f o r  Y/Y0 << 1 
w e  m a k e  t h e  s u b s t i t u t i o n  ~Y/Y0 = 53 and s p l i t  t h e  i n t e r -  

v a l  of  i n t e g r a t i o n  in (2.3) into two p a r t s :  f r o m  z e r o  to 

x 1 and f r o m  x 1 to  x ,  c h o o s i n g  x i such  tha t  t h e  c o n d i -  

t ion  ~rxl/y 0 ~ 5 is  f u l f i l l ed .  We m a y  then  w r i t e  

xz  

H~ ,~ [ l - ~ A O ( 8 ) ] L a  g ~ j x  
V ~--- r  

o 

sh (ax / Y0) dz 
• sin~ (ny / go) -t- sh2 (nx / Y0) 

+ f (exp 2A,~ ) 8" [~ + 0 @l dx~ 
:r 

F o r  5 ~ 0 t he  f i r s t  i n t e g r a l  t ends  to a quan t i t y  i n d e -  
penden t  of A,  and the  s e c o n d  to z e r o .  Thus  f o r  any A, 

J 
0.5 1 ~* 

F i g .  3 

w i th in  t h e  a p p r o x i m a t i o n  u s e d  in s o l v i n g  t h e  p r o b l e m ,  

t he  j e t  cone  ang l e  a i s  the  s a m e .  I t s  a b s o l u t e  m a g n i -  

t ude  is  

a =  a rc tg  [ v / u o l =  a r e t g ( 0 . 0 3 7 H o  ~/p0u02). ( 2 .4 )  

F i g u r e  4 shows  t h e  d i s t r i b u t i o n  of t h e  i n c r e a s e  in 

t h e  x c o m p o n e n t  of v e l o c i t y  c a l c u l a t e d  f r o m  f o r m u l a s  

ZOO r n 

0.g# if* 

Fig. 4 

(1.5) and (2.2) f o r  A -- 0.1 at  d i f f e r e n t  c r o s s  s e c t i o n s  
of  t h e  j e t .  T h e  uni t  on t h e  a b s c i s s a  ax i s  is t h e  quan t i t y  

u* = (8~rp0ujH2)u, wh i l e  t ha t  of  t he  o r d i n a t e  a x i s  i s  
t he  r a t i o  Y/Y0- T h e  p r o f i l e  of  u i s  m a r k e d l y  n o n u n i f o r m  
at  a d i s t a n c e  of f r o m  two to t h r e e  t i m e s  t h e  channe l  
h e i g h t  f r o m  t h e  exi t .  

3. It is of interest to consider the flow beyond the outlet of a chan- 
nel with three electrodes: two external electrodes at the same potential 
and an internal electrode at a differer~ potential, The flow it! the jet 
emerging from such a channel should be similar to the flow beyond the 
outlet of a coaxial accelerator. ~ this case we shall let the coordinate 
origin be situated at the end of the center electrode. Let the coordin- 
ates of the ends of the outer electrodes be ~ y0, respectively. 

The distribution of all quantities may be found everywhere, with 
the exception of the zone behind the middle electrode, from the same 
formulas as before (formulas (1.5), (2.2), (2.3), (2.4)). Since the veloc- 
ity v has different signs on either side of the middle electrode, this 
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should lead to the formation of shock waves leaving the end of the mid- 
dle electrode. 

Assuming that the flow behind the shock is adiabatic and taking (3.1) 
into account we find that 

O 1 z x l~  

F i g .  5 

We shah carry out some calculations for these compression shocks 
and the flow behind them in the first approximation, assuming that the 
shocks are strong enough for the pressure in front of them to be neglected 
in comparison with the pressure behind them. Since the M number for 
the stream in front of the shock is very large, the angle of inclination 

of the shock relative to the x axis is small, and consequently the 
height of the zone behind the shock is small compared with the width 
of the channel. Taking this into account, as well as the fact that the 
shock wave arises as it were from nonuniform flow around a wedge (it 
follows from symmetry that the x axis is a streamline of zero curva- 
ture), we may neglect, within the degree of accuracy to which we are 
working here, the pressure variation across the zone behind the shock 
wave. Quantities in front of the shock wave will be denoted by letters 
without an index, while letters with the superscript " will be used for 
quantities behind the shock wave. On the assumptiom already made we 
may write [2] 

2 x + l  
p~ = ~ P U ~  2 p~ + i  ' = x ----~-i- P, 

%~ = x § %'  %~ = u~, (3.1) 

where u n, u r are the velocity components normal and tangential to the 
shock wave. They may be expressed in terms of U, v and $, the angle 
of inclination of the shock to the x axis, as follows: 

it, = U cos 13 -I- v sin ~ ~-- uo -~ u, 

U n = - -  U s i n ~ - ~  v c o s g ~ - - u o ~ -  v .  (3.2) 

Here the second halves of the equations allow for the fact that $ << 
<< 1, v/u0 << t, andu/u0 << 1. The coordinate of the compression shock 
Ys may be calculated from considerations of jet flow behind a shock. 
Let the gas in a jet flow which has intersected a shock wave at a cross 
section of coordinate x ,  have a density p~ x,)  at the cross section 
with coordinate x which is under consideration. Then to the first ap- 
proximation the rate of gas flow in this jet stream at the cross section 
in question is dq = uopO(x, x.)dy. On the other hand if we consider this 
jet at the cross section x ,  we find that 

dq = - -  p (x , )  u n (x , )  d x , ,  

uop ~ (z, z,) dy = - -  p (~ , )  u n (x , )  d x ,  . (3.3) 

p (x,) }r --  i p~ (x,. m,) }r -- I I- p~ (x,) ]I/, (3.4) 

Allowing for (3.4) we have from (3.3) 

_ x - ,  ~ -,,  (~,) pp o ( : , , ) l ' /X 

o 

M (z,) -- Z (=,)lud(x+~)_./x 

0 

Differentiating (3.5) with respect to x and remembering that /5 = 
= Y's' /3' = y~', we obtain the differential equation for determining y~: 

2 1 2 v 
- ~ ' - y c y c " - - ~ - - ~ I  ye' + (u - -  1) "-~01 • 

( , )  2 
x Ys' ---h~-o - -CTYs ~ = o.  (3.6) 

The boundary conditions in this case are 

Y s = O ,  y s ' = ~ o = - - O . 5 ( •  for z = 0 .  (3.7) 

The second boundary condition expresses the fact that for x = 0 the 
velocity v* behind the shock is zero. We thus obtain (3.7) from (3.1) and 
(3.2). Integrating (3.6) with the boundary conditions (3.7) we find the 
form of the compression shock. The solid line in Fig. 5 shows the 
form of the compression shock (in the upper half of the channel), calcu- 
lated for ~ = 5/3 and Ho~/pouo ~ = 2.5 (this corresponds to the case when 
the velocity outside the accelerator increases by about 1~0 of its value 
at the accelerator cutoff). The dashed line in the same figure shows the 

stream line in the channel calculated from the equation dy/dx = v/u0, 
where v is given by formula (2.3). The stream lines were calculated for 
the parameter value A = 0.1. 

The plasma flow pattern beyond the accelerator cutoff obtained 
above is well-confirmed by experimental data, at least qualitatively. 

Since the gas behind the compression shock has a higher temperature 
than in the main core of the stream, the region behind compression 
shocks radiates much more brightly. Usually in experiments the bound- 
aries of a brightly glowing zone are clearly evident behind the central 
electrode. These boundaries are compression shocks. 
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